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Abstract
We describe a new class of scattering matrices for quantum graphs in which
back-scattering is prohibited. We discuss some properties of quantum graphs
with these scattering matrices and explain the advantages and interest in their
study. We also provide two methods to build the vertex scattering matrices
needed for their construction.
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1. Introduction

It has been proposed that quantized versions of metric graphs could be used to investigate the
origin of spectral correlations in semi-classical quantum systems [1]. This programme has
borne a considerable amount of fruit in the past decade. The culmination has been the ground-
breaking work [2] providing a mechanism to understand the fidelity of spectral correlations
to random matrix theory in a large class of so-called quantum graphs. It is now clear that
quantum graphs can be considered at the forefront of attempts to understand the universal
spectral correlations present in quantized chaotic systems [3, 4]. For a review with ample
references we refer the reader to [5].

One interesting new development has been the discovery that the techniques of [1] can be
used to develop trace formulæ and associated spectral zeta functions for discrete Laplacians
on graphs [6]. This leads to the possibility of investigating deep connections between quantum
graphs and combinatorial spectral graph theory, hitherto unexploited. In the present article we
expand on some ideas introduced in [6].

We consider finite, connected graphs without loops or multiple bonds, and which have B
bonds and V vertices. The topology of the graph is specified in terms of the V ×V connectivity
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matrix C, whose p, q element takes the value 1(0) if the vertices p and q are connected (not
connected). We denote by vj the valency (degree) of the vertex j . A graph for which all the
vj are equal to v, is called a v-regular graph. The metric properties are provided by the bond
lengths Lb, 1 � b � B.

Spectral problems on quantum graphs are often written in terms of a 2B × 2B unitary
quantum evolution matrix U defined on the vector space spanned by the directed bonds [6].
U itself can be defined in terms of the vj × vj unitary scattering matrices σ (j), j = 1, . . . , V

associated with each vertex of the graph

U(pj)(mq)(k) = δjmσ (j)
pq eikL(pj) , (1.1)

where (pj) is a directed bond with the initial vertex p and the terminal vertex j . The spectrum
under consideration is the set of values {kn}n∈Z of the spectral parameter k for which

det[I2B − U(k)] = 0. (1.2)

(Here and elsewhere In denotes the identity matrix of dimension n.) A vertex scattering matrix
σ may be derived from boundary conditions of a self-adjoint operator as in [1], or specified
a priori in order to provide a wider class of examples [7, 8], which is the approach we adopt
here. Selecting a k-independent unitary vertex scattering matrix leads to a quantum evolution
operator (1.1) which is unitary and the spectrum, defined in (1.2), is necessarily real.

The classical analogue of a quantum graph is a Markovian process on the directed bonds
[1] with the matrix M of transition probabilities related to U by

M(pj)(mq) = |U(pj)(mq)|2.
Thus M is a doubly stochastic matrix, and hence it has dominant eigenvalue 1. It can be
interpreted as the classical operator which induces a discrete-time Markovian evolution on the
graph. The spectral gap � is the gap between the leading eigenvalue 1 and the second largest
eigenvalue of M, in absolute value. It is conjectured that the rate of convergence of spectral
statistics of quantum graphs to random matrix theory is governed by the rate of ergodicity in
this Markov evolution. More precisely, for a sequence of graphs with B → ∞ the eigenvalues
of the quantum graph are given by random matrix theory if B� → ∞ [8].

We propose to study a new class of vertex scattering matrices defined in the following
way:

Definition 1.1. A v × v unitary matrix σ is equi-transmitting if σpp = 0 for all p and the
off-diagonal elements have equal amplitudes: |σpq | = (v − 1)−

1
2 for p �= q, where v is the

valency of the vertex.

Our definition of an equi-transmitting matrix involves two properties which have implications
for the classical analogue of the quantum graph. The first ensures that a classical particle
on a directed bond has probability zero to be back-scattered to the reversal of that bond
in the next time step. The second property produces democratic transmission probabilities
M(pj)(mq) = (vj − 1)−1δmj for p �= q

Other common choices for vertex scattering matrices are the Neumann matrix σ [N],

σ [N]
pq = 2

v
− δpq (1.3)

and Fourier transform matrices σ [F ] introduced as vertex scattering matrices in [8],

σ [F ]
pq = 1√

v
e2π ipq/v. (1.4)
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Fourier transform scattering matrices allow back-scattering with equal transmission and
reflection probabilities, M(pj)(mq) = v−1

j δmj . The Neumann scattering matrices prefer back-
scattering transitions over all other transitions put together.

The transition probabilities induced by the three classes of scattering matrices at a vertex
with a valency v can be summarized by

|σii |2 = r and |σij |2 = 1 − r

v − 1
for i �= j , (1.5)

where r = (2/v−1)2 (Neumann), r = 1/v (Fourier transform) and r = 0 (equi-transmitting).
The aims of the present manuscript can be summarized as follows:

(i) To explain the motivations for studying graphs with equi-transmitting vertex scattering
matrices.

(ii) To prove that equi-transmitting vertex scattering matrices exist for arbitrarily large v and
to provide practical methods to construct them.

(iii) To investigate their spectral properties on both the classical (gap estimates) and the
quantum (spectral statistics) levels.

The following section will explain the motivation for introducing the equi-transmitting
scattering matrices. While equi-transmitting matrices will be shown to have desirable
qualities, an elementary calculation shows its trivial to construct 2 × 2 examples, but no
3 × 3 equi-transmitting matrix exists. In section 3, we address the question of their existence
in other dimensions and to provide several infinite sets of examples. Whether equi-transmitting
matrices exist in all dimensions greater than three is an interesting open question. In section 4,
we compare spectra of the matrix M for graphs quantized with different scattering matrices.
We find that in some fairly general situations the spectral gap in equi-transmitting quantum
graphs is larger than that obtained with other scattering matrices. In section 5, we present
the results of numerical simulations using equi-transmitting quantum graphs that show that
random matrix statistics are reproduced.

2. Motivations

In this section, we shall try to explain the motivations for the introduction of the
equi-transmitting vertex matrices.

A fundamental building block in the spectral theory for quantum graphs and a key tool
in understanding spectral correlations [5] is the trace formula [1, 9]. It relates the quantum
spectrum of a graph, {kn}n∈Z, to the length spectrum of its periodic orbits, expressed as an
identity of distributions:∑

n∈Z

eiknu = L δ(u) +
∑
p.o.

�p

rp

(Apδ(u − �p) + Āpδ(u + �p)). (2.1)

The first term on the right-hand side of (2.1) is the Weyl term. L denotes twice the total length
of the graph and plays the role of the volume. The more interesting second term is a sum which
goes over classes of closed itineraries on the graph equivalent up to cyclic permutations of the
edges. We call these periodic orbits of the graph. The metric length of an orbit is denoted
by �p and rp is the number of times the orbit is a repetition of a shorter one. The amplitude
factor Ap is the product of all elements of the vertex scattering matrices encountered as the
orbit passes from one bond to the next.

Since equi-transmitting matrices forbid back-scattering transitions, any orbit in which a
traversal of a bond is followed immediately by the traversal of its reverse is eradicated from
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the sum. This significantly reduces the number of orbits which need to be considered—in
fact, the orbits that remain are exactly the closed geodesics considered in combinatorial graph
theory which will be discussed below. For a v-regular graph the asymptotic number of orbits
of period n is reduced from vn/n to (v − 1)n/n.

We anticipate that using equi-transmitting scattering matrices will significantly simplify
periodic orbit theories in quantum graphs, and perhaps lead to new interesting problems
and breakthroughs. The following will serve as an example: a theorem of Gutkin and
Smilansky [10] guarantees that one can ‘hear’ the shape of a graph if the bond lengths are
rationally independent and if the vertex scattering matrices are ‘properly connecting’. The
equi-transmitting scattering matrices do not belong to the latter class and the question if one
can ‘hear’ equi-transmitting graphs is open. The proof of the above mentioned theorem is
based on the trace formula and relies heavily on the special properties of the 2-periodic orbits
which are absent from the trace formula of equi-transmitting graphs. Thus, a completely novel
approach has to be developed.

The study of quantum graphs with equi-transmitting vertex scattering matrices leads to
connections with objects that have been extensively studied in combinatorial graph theory, such
as the Ihara–Selberg zeta function [11] and its generalizations. One way to see this connection
is by studying the spectrum of the classical evolution operation M, which is defined as the zero
set of the secular function

ZM(µ) := det[I2B − µM]. (2.2)

This equation can be used to derive a classical (Rouelle-like) trace formula which is based on
the periodic orbits on the graph weighted by the products of scattering probabilities along the
orbit. When dealing with equi-transmitting vertex scattering matrices, the trace formula (and
the corresponding zeta function) includes only periodic orbits without back-scatter. These
are the orbits which appear in the Ihara–Selberg zeta function and its extensions [12–15].
Moreover, the zeta functions are related by simple transformations, so that an interesting
correspondence between the two seemingly unrelated problems can be established. We have
mentioned previously the classical spectral gap � and its conjectured influence on the spectral
statistics in the corresponding quantum graph. Establishing bounds on � arises in the study of
the Ihara–Selberg zeta function, which makes an intriguing link between spectral statistics and
number theory. (See [16] for a review of the connections between arithmetical zeta functions
and spectral statistics.) We shall make use of these connections here (see section 4).

We are not able to prove that graphs with equi-transmitting vertex scattering matrices
display spectral statistics which reproduce the predictions of random matrix theory. We
present, however, quite convincing numerical evidence showing that both their spectral
repulsion and spectral rigidity adhere to the predictions of the canonical random matrix
ensembles. Whether this observation is valid and can be rigorously formulated is an open
problem awaiting future research.

3. Existence and construction

In this section, we shall show that the set of equi-transmitting matrices is not empty or trivial.
It is easy to construct equi-transmitting matrices in dimension 2. It is equally easy to show
that equi-transmitting matrices do not exist in dimension 3. We are not able to provide a list
of the dimensions for which equi-transmitting matrices exist. We can, however, show that
this list is infinite. We do it by constructing examples of equi-transmitting matrices using
skew-Hadamard matrices [17–19] and Dirichlet characters [20].
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3.1. Construction of equi-transmitting matrices using Hadamard matrices

Definition 3.1. A Hadamard matrix H is a matrix whose entries are ±1 and whose columns
are orthogonal. A skew-Hadamard matrix is a Hadamard matrix satisfying the additional
condition

H + H T = 2Iv. (3.1)

Proposition 3.2. Let H be a v × v skew-Hadamard matrix. Then

σ = 1√
v − 1

(H − Iv) (3.2)

is an equi-transmitting matrix.

Proof. All entries of σ are ±(v − 1)−1/2 except for the zero entries along the diagonal. So we
need only check unitarity. But this is clear, since

σσ T = 1

v − 1
(HH T − (H + H T) + Iv)

= Iv, (3.3)

since necessarily HH T = vIv . �

Hadamard matrices have been conjectured to exist in dimensions 1, 2 and all multiples
of 4. This conjecture appears to date back to [21]. Various constructions of skew-Hadamard
matrices are known [17–19]. Currently, there are constructions of skew-Hadamard matrices
for all dimensions which are a multiple of 4 up to and including 184 [22, 23] plus other
infinite sets of dimensions.

3.2. Construction of equi-transmitting matrices using Dirichlet characters

This method provides equi-transmitting matrices of dimensions P + 1, where P is any odd
prime number.

Proposition 3.3. Let P be an odd prime and let χ be a non-trivial Dirichlet character modulo
P. Let C be the P × P matrix defined by Cj� = χ(� − j). Then

σ = 1√
P

⎛
⎜⎜⎜⎝

0 1 · · · 1
1
...

1

C

⎞
⎟⎟⎟⎠ (3.4)

is equi-transmitting.

We first need an auxiliary lemma.

Lemma 3.4. Let P be an odd prime, χ a non-trivial Dirichlet character and j ∈ Z. Then
P−1∑
n=0

χ(n − j)χ(n) =
{
P − 1 if j ≡ 0 mod P,

−1 otherwise.
(3.5)

Proof. If j ≡ 0 modulo P then
P−1∑
n=0

|χ(n)|2 =
P−1∑
n=1

1 = P − 1. (3.6)
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Otherwise, writing n−1 for the multiplicative inverse of n in the finite field Z/PZ,
P−1∑
n=0

χ(n − j)χ(n) =
P−1∑
n=1

χ(n − j)χ(n)−1

=
P−1∑
n=1

χ((n − j)n−1)

=
P−1∑
n=1

χ(1 − jn−1).

Now since n−1 runs over all invertible elements in the field, the only argument which does not
appear in the sum is 1. So

P−1∑
n=0

χ(n − j)χ(n) =
P−1∑
m=0

χ(m) − χ(1)

= −1, (3.7)

using orthogonality of Dirichlet characters [20] and the known value χ(1) = 1. �

Proof of proposition 3.3. We first observe that |χ(n)| = 1 unless n ≡ 0 whence χ(0) = 0,
so σ has the required form. It is easy to see that unitarity will follow once we prove that

CC† =

⎛
⎜⎜⎜⎝

P − 1 −1 · · · −1
−1 P − 1 · · · −1
...

...
. . .

...

−1 −1 · · · P − 1

⎞
⎟⎟⎟⎠ . (3.8)

For this, note that the inner product of the j th and �th columns of C can be written as
P∑

m=1

CmjCm� =
P∑

m=1

χ(j − m)χ(� − m)

=
P−1∑
n=0

χ(n + j − �)χ(n), (3.9)

via a change of index of summation. Now (3.8) follows by using the lemma to evaluate the
sum (3.9). �

Corollary 3.5. Let P be a prime congruent to 1 modulo 4. Then there exists a symmetric
equi-transmitting matrix of dimension P + 1.

Proof. We use the construction in proposition 3.3 with the Legendre symbol as the Dirichlet
character χ(n) = (

n
P

)
, where

( n

P

)
:=

⎧⎨
⎩

0 if n ≡ 0 mod P,

1 if n is a square modulo P ,
−1 if n is not a square modulo P .

(3.10)

To show that σ is symmetric it suffices to show that the circulant matrix C is symmetric. To
see this, note that

χ(P − m) =
(

m(−1)

P

)
=

(m

P

)(−1

P

)
=

(m

P

)
= χ(m),

since (−1/P ) = 1 if P ≡ 1 modulo 4 (Euler). �
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By Dirichlet’s theorem, corollary 3.5 provides infinitely many examples of symmetric
equi-transmitting matrices. Furthermore, since they are real and unitary they satisfy σ 2 = Iv .
For any unitary vertex scattering matrix satisfying this condition, the corresponding boundary
conditions for a self-adjoint realization of the Laplace operator can be found, as in [24]. So
for these choices of vertex scattering matrix, the spectrum defined in (1.2) is also the spectrum
of a self-adjoint differential operator on the graph.

The constructions in propositions 3.2 and 3.3 give many examples of equi-transmitting
matrices of even dimensions. We can construct an example of an equi-transmitting matrix in
dimension 5,

σ = 1

2

⎛
⎜⎜⎜⎜⎝

0 1 1 1 1
1 0 1 ω ω2

1 1 0 ω2 ω

1 ω ω2 0 1
1 ω2 ω 1 0

⎞
⎟⎟⎟⎟⎠ , where ω = e2π i/3. (3.11)

However, apart from this example we do not have any examples in odd dimensions. These
equi-transmitting matrices do not appear to have been studied in the literature. An examination
of (3.11) might lead one to suspect that such matrices can be constructed for dimension v by
using entries that are (v − 2)th roots of unity. However, we have exhaustively checked for the
case v = 7 and shown this to be false.

4. Properties of graphs with equi-transmitting scattering matrices

Now that we have demonstrated the existence of equi-transmitting matrices, we can study the
quantum and classical evolutions which they induce. In particular, we shall use some results
from combinatorial graph theory to demonstrate the advantages gained by studying graphs
with equi-transmitting vertex scattering matrices.

An important tool in the preceding discussion is the spectrum of the connectivity matrix
C defined in the introduction. Since C is symmetric its eigenvalues µj are real, and we order
them: µV −1 � · · · � µ1 � µ0.

We shall consider v-regular graphs and to avoid trivial cases we will assume throughout
that v > 3. A connected v-regular graph has the property that its connectivity matrix has
largest eigenvalue µ0 = v and it is simple. A v-regular graph is called Ramanujan if all other
eigenvalues of C are contained in the interval [−2

√
v − 1, 2

√
v − 1]. Ramanujan graphs are

of interest in computer science and communication network theory since they are sparse yet
highly connected [25, 26].

We shall discuss the spectrum of the classical evolution operator M on a v-regular graph
constructed by using vertex scattering matrices of the types listed in (1.5). We shall relate
them to the spectrum of the connectivity matrix C by the following theorem.

Theorem 4.1. Let M be the doubly stochastic transition probabilities matrix associated with
a quantum v-regular graph with unitary vertex scattering matrices σ which satisfy (1.5) for
some r > 0. Let the eigenvalues of C be µ0 � µ1 � · · · � µV −1. Let

uj :=
(1 − r)µj +

√
(1 − r)2µ2

j − 4(1 − rv)(v − 1)

2(v − 1)

and

ũj :=
(1 − r)µj −

√
(1 − r)2µ2

j − 4(1 − rv)(v − 1)

2(v − 1)
.
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The spectrum of M consists of the points

u0, . . . , uV −1, ũ0, . . . , ũV −1,
|1 − rv|
v − 1

,−|1 − rv|
v − 1

,

where the last two points are listed with multiplicity (v−2)V

2 .

Proof. Let W be the matrix representing Hashimoto’s bond (edge) adjacency operator
[15, 27] defined as

W(pj)(mq) = δmj (1 − δpq). (4.1)

It has entries equal to 1 only when two directed bonds follow each other at a common vertex
j , but excluding back-scattering. J will denote the matrix with entries equal to 1 when a
directed bond is followed by its reversal,

J(pj)(mq) = δmj δpq . (4.2)

The form of the vertex scattering matrices σ of interest here is provided by (1.5). It implies
that for v-regular graphs,

M =
(

1 − r

v − 1

)
W + rJ,

where r = (2/v −1)2 (Neumann), r = 1/v (Fourier transform) and r = 0(equi-transmitting).
The characteristic polynomial of M, det[uI2B −M] is related to a graph theoretic zeta function
developed in [28]. Bartholi’s theorem [28, 29] implies an equivalent form for the characteristic
polynomial in terms of the matrix C,

det[uI2B − M] =
(

u2 − (1 − rv)2

(v − 1)2

)(v−2)V/2

det

[(
u2 +

1 − rv

v − 1

)
IV − 1 − r

v − 1
Cu

]
.

It follows that eigenvalues of M are solutions to

u2 − (1 − rv)2

(v − 1)2
= 0

(with multiplicity (v − 2)V/2) and

u2 − 1 − r

v − 1
µju +

1 − rv

v − 1
= 0,

for j = 0, . . . , V − 1. �

For regular graphs with equi-transmitting scattering matrices, theorem 4.1 shows that the
eigenvalues of M are (up to a scaling) at the positions of the poles of the Ihara–Selberg zeta
function [11] of the graph, as was noted in [6]. The proof in this case follows from Bass’
identity [30] of which Bartholi’s theorem is a generalization.

Theorem 4.1 will enable us to compare equi-transmitting scattering matrices with others
of type (1.5) (see theorem 4.3 below). It also has a number of other consequences which may
be of independent interest.

Corollary 4.2.

• If r � 1/v then all eigenvalues of M are real.
• If r = 1/v (e.g. Fourier transform scattering matrix) then the eigenvalues of M are

µ0

v
, . . . ,

µV −1

v
, 0, (4.3)

and the 0 has multiplicity (v − 1)V .
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• If r < 1/v then uj and ũj are real iff |µj | � 2
1−r

√
(1 − rv)(v − 1).

• If r < 1/v and |µj | < 2
1−r

√
(1 − rv)(v − 1) then

|uj | = |ũj | =
√

1 − rv

v − 1
. (4.4)

In particular, for a v-regular graph which is Ramanujan, and has equi-transmitting scattering
matrices, all but the eigenvalue 1 lie in a disc of radius (v − 1)−1/2 about the origin.

Theorem 4.3. Consider a v-regular graph. Let the spectral gap for the quantum graph with
equi-transmitting scattering matrices be �et and denote by �r the spectral gap for the same
graph with scattering matrices σ satisfying (1.5) for some r > 0. Then there exists ε > 0 such
that if C has an eigenvalue in either of the intervals (2

√
v − 1 − ε, v) or [−v,−2

√
v − 1 + ε)

then �et > �r .

We give the proof of theorem 4.3 at the end of this section. Theorem 4.3 demonstrates that in
some fairly general situations the spectral gap arising in quantum graphs with equi-transmitting
scattering matrices is larger than the spectral gap with other kinds of scattering matrices. Note
that if one considers a sequence of v-regular graphs with V → ∞ the Alon–Boppana bound
[25, theorem 1.3.1] states that

lim inf
V →∞

µ1 � 2
√

v − 1. (4.5)

In other words, theorem 4.3 will apply eventually.
In the interests of full disclosure we point out that for some other families of graphs

equi-transmitting matrices will not necessarily lead to a larger (although still large) spectral
gap, e.g. fully-connected graphs.

Before giving the proof, we provide one more lemma.

Lemma 4.4. Let 0 � µ < v. Then define

fµ(r) := (1 − r)µ +
√

(1 − r)2µ2 + 4(vr − 1)(v − 1)

2(v − 1)
. (4.6)

Then fµ(r) is real and strictly increasing on 1 − 2(v−1)

µ2 (v −
√

v2 − µ2) � r � 1.

Proof. It is convenient to define a new variable X = v(1 − r)/(v − 1), so that fµ becomes,
after some manipulation,

fµ(X) = 1

2v
(Xµ +

√
µ2X2 + 4v2(1 − X)), (4.7)

and is real if 0 � X � 2v2−2v
√

v2−µ2

µ2 . Differentiating

dfµ

dX
= 1

2v

(
µ − 2v2 − µ2X√

µ2X2 + 4v2(1 − X)

)

� 1

2v

(
µ − (2 − X)v2√

v2(X − 2)2

)

= 1

2v
(µ − v) < 0

since
√

(X − 2)2 = 2 − X, as 0 � X < 2. As dX
dr

< 0 it follows that fµ(r) is strictly
increasing. �
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Figure 1. The graphs used in the numerical simulations: (a) a complete graph with 13 vertices
and (b) a 5-regular graph with 20 vertices.

Proof of theorem 4.3. We assume |µ1| � |µV −1|. If this is not the case then the argument
below holds mutatis mutandis replacing µ1 by µV −1.

If the graph is Ramanujan, and if r < 1/v, then choose ε so that

2 − rv

1 − r

√
v − 1 < 2

√
v − 1 − ε. (4.8)

Since v > 3, if r > 0 such an ε can always be found.
As µ1 > 2−rv

1−r

√
v − 1 > 2

1−r

√
(1 − rv)(v − 1), by corollary 4.2 u1 = fµ1(r) is real and

�r = 1 − u1, where

u1 =
(1 − r)µ1 +

√
(1 − r)2µ2

1 − 4(1 − rv)(v − 1)

2(v − 1)
>

1√
v − 1

. (4.9)

For Ramanujan graphs, �et = 1 − 1√
v−1

> �r .
If the graph is Ramanujan and r � 1/v then choose ε to satisfy

v√
v − 1

< 2
√

v − 1 − ε. (4.10)

By lemma 4.4,

u1 � fµ1(1/v) = µ1

v
>

1√
v − 1

(4.11)

and again we have �et > �r .
If the graph is not Ramanujan, then u1 is still real, since

µ1 > 2
√

v − 1 >
2

r − 1

√
(1 − rv)(v − 1) if r < 1/v, (4.12)

so by lemma 4.4

1 − �r = fµ1(r) > fµ1(0) = 1 − �et. (4.13)
�



Quantum graphs where back-scattering is prohibited 14191

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12

Quantum graph
GOE
GUE

Quantum graph
GOE
GUE

P (s)

s L

V (L)

Figure 2. Spectral statistics for a quantum regular graph with symmetric scattering matrices. On
the left is a plot of the nearest-neighbour density; on the right is the number variance.
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Figure 3. Spectral statistics for the quantum complete graph with anti-symmetric scattering
matrices. On the left is a plot of the nearest-neighbour density; on the right is the number variance.

5. Numerical simulations

The results of the previous section show that well-connected quantum graphs with
equi-transmitting scattering matrices can have large spectral gaps. According to the Tanner
conjecture [8] the spectral statistics should converge to the statistics of ensembles of random
matrix theory. To illustrate this we present the results of some numerical calculations of the
nearest-neighbour spacing density P(s) for points in the spectrum of a quantum graph, and
the variance V (L) of the number of points in an interval of length L.

To calculate these spectral statistics we did not solve (1.2) directly. Rather we took an
approach which is known to be equivalent. We replaced the phases kL(pj) in (1.1) by random
phases in the interval [0, 2π ] and diagonalized the resulting matrices. The statistics of the
re-scaled eigen-phases approach those of the spectrum defined by (1.2) in the limit as B → ∞
if the bond lengths are not rationally related, and drawn from a narrowing interval as B → ∞
[5, 31].

In figure 2, we plot the nearest-neighbour distribution and number variance for the
5-regular graph in figure 1(b) with the equi-transmitting vertex scattering matrix given



14192 J M Harrison et al

explicitly in (3.11). Since σ is symmetric we expect the spectral statistics to approach those
of the Gaussian orthogonal ensemble (GOE) of random matrices. We also plot in figure 2 the
corresponding limiting curves for GOE unitary ensemble (GUE) [32]. We see, as expected,
agreement to the GOE curves, even for such a relatively small graph.

In figure 3, we present the corresponding numerics for the complete graph on 13 vertices
(figure 1(a)) with an anti-symmetric equi-transmitting scattering matrix at each vertex. In this
case, we expect convergence to the Gaussian unitary ensemble statistics and this is also clearly
demonstrated in the figure.

Given the utility of these equi-transmitting matrices, we believe the study of their existence
in dimensions for which we do not currently have examples is interesting and merits further
investigation.
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